Разноуровневая диагностика методико-математической компетенции будущих учителей начальных классов

Г.Г. Шмырёва, Н.Ф. Булатова

В соответствии с Федеральным государственным образовательным стандартом начального общего образования (ФГОС НОО) изучение математики на начальной ступени направлено на формирование личности, обладающей не только знаниями, умениями и навыками, но и такими качествами, как саморазвитие и самосовершенствование. Задача практической реализации этой идеи возлагается на учителя и во многом зависит от его профессиональной подготовки, которая должна интегрировать в себе специальные, психолого-педагогические и методические компетенции.

Процесс подготовки учителя к профессиональной деятельности описан в многочисленных исследованиях по проблеме формирования методико-математических компетенций учителя начальных классов. В работах Н.Б. Истоминой, В.Ф. Ефимова, Т.В. Зацепиной, Н.Н. Лавровой, Л.П. Нестеренко, Л.П. Стойловой и др. широко представлены требования к методико-математическим знаниям и умениям выпускников факультетов начального образования. Однако в настоящее время в образовании возникла необходимость построения системы педагогического мониторинга. Это связано прежде всего с большим объёмом информации о ходе и промежуточных результатах педагогического процесса, а также с необходимостью упорядочивания её использования в системе управления. Одним из эффективных средств мониторинга качества подготовки будущих учителей начальных классов является тестирование. Использова-

ние разноуровневых тестов как средства мониторинга позволяет

отрабатывать методику применения тестирования в зависимости от продвижения студентов в учебном процессе.

При разработке содержания тестов мы опирались на уровни готовности студентов к профессиональной деятельности, выделенные Л.П. Нестеренко [3]: методико-математическая грамотность (первый уровень), методико-математическая компетентность (второй уровень), методическое творчество (третий уровень). Каждый уровень характеризуется сформированностью определённых методикоматематических знаний, умений и навыков.

Студенты, освоившие первый уровень, должны знать те математические понятия, законы, свойства, способы действий, которые нашли отражение в начальном курсе математики.

На втором уровне студенты должны знать, в каком виде математические понятия, законы и свойства предлагаются младшим школьникам; уметь преобразовывать предложенные задания, ориентируясь на взаимосвязь изучаемых понятий и способов действий, а также уметь составлять задания по определённой теме программы.

Третий уровень характеризуется умением студента создавать проблемные ситуации, используя для этой цели теоретические сведения о математических понятиях; разрабатывать задания, в процессе выполнения которых учащиеся не только овладевают знаниями, умениями и навыками, но и продвигаются в своём развитии. Важным условием, задаваемым этим уровнем, является сформированность у студента методического мышления, которое характеризует его как исследователя, способного не только видеть методические проблемы, но и самостоятельно находить новые способы их решения.

Приведём примеры содержания тестов в соответствии с выделенными уровнями методико-математической готовности студентов к профессиональной деятельности. При составлении тестов мы ориентировались на четыре основные формы тестовых заданий: открытой, закрытой, на установление правильного соответствия, на установление правильной последовательности.

HA TEMY HOMEPA

Примеры тестовых заданий первого уровня (методико-математическая грамотность).

Задание 1. Установите правильное соответствие свойств сложения целых неотрицательных чисел свойствам объединения множеств.

Свойства	Свойства
сложения	объединения
	множеств
A. $5 + 7 = 7 + 5$	1. (A∪B)∪C=A∪(B∪C)
5. 8 + (2 + 9) = $= (8 + 2) + 9$	2. A ^U B = B ^U A
B. 8 + 0 = 8	3. A ∪ A = A
Γ . 8 + 8 = 16	4. A ∪ Ø = A
Ответ: А –	,Б- ,В- ,Г

Задание 2. Установите правильное соответствие вычислительного приёма его теоретической основе.

Теоретическая основа

- А. Определение сложения натуральных чисел в аксиоматической теории.
 - Б. Коммутативное свойство сложения.
 - В. Ассоциативное свойство сложения.
- Г. Коммутативное и ассоциативное свойства сложения.

- 1. 43 + (15 + 27) = 43 + (27 + 15) = (43 + 27) + 15 = 70 + 15 = 85
- 2. 14 + (6 + 8) = (14 + 6) + 8 = 20 + 8 = 28
- 3. $2 \cdot 7 + 8 \cdot 2 = 2 \cdot 7 + 2 \cdot 8 = 2 \cdot (7 + 8) = 2 \cdot 15 = 30$
- 4. $16 \cdot 4 = (10 + 6) \cdot 4 = 10 \cdot 4 + 6 \cdot 4 = 40 + 24 = 64$
- 5. 8 + 3 = 3 + 8
- 6. 8 + 1 = 9

Ответ: A - , Б - , В - ,
$$\Gamma$$
 -

Из курса математики студентам известно, что для сложения целых неотрицательных чисел используются его коммутативное и ассоциативное свойства. В начальном курсе математики учащиеся знакомятся с коммутативным свойством сложения, называя его «переместительное свойство сложения» или «перестановка слагаемых». Ассоциативное свойство сложения представлено в курсе математики начальных классов как сочетательное свойство сложения. Поэтому, выполняя задание 1, студенты должны установить такое соответствие: A - 2, B - 1, B - 4. При выполнении задания 2 устанавливается соответствие: $\tilde{A} - 6$, B - 5, B - 2, $\Gamma - 1$.

Задание 3. Отметьте галочкой выражения, значения которых находят, используя определение сложения при аксиоматическом построении натуральных чисел:

- 1) 5+3=5+(2+1)=(5+2)+1=7+1=8;
- 2) 4 + 3 = 3 + 4;
- 3) 4 + 1 = 5:
- 4) 16 + 18 = (14 + 2) +18 = 14 +(2 +18) = 14 + + 20 = 34

Ответ: отметить галочкой нужно равенства 1) и 3).

Задание 4. При вычислении значения выражения выполнялись следующие преобразования: (1 + 3) + 47 = 1 + (3 + 47) = 1 + (47 + 3) = 1 + 50 = 50 + 1 = 51.

Продолжите высказывание: «Теоретической основой вычислений является коммутативное, ассоциативное свойства сложения и определение сложения

Ответ: «в аксиоматической теории натуральных чисел».

Примеры тестовых заданий второго уровня (методико-математическая компетентность).

Задание 1. В каких рассуждениях учащихся используется определение разности для обоснования своих действий при нахождении значения выражения 15 – 6?

А. Чтобы из 15 вычесть 6, можно число 6 вычесть из 10, получится 4, а затем к полученному результату прибавить 5 единиц, получится 9. Значит, разность чисел 15 и 6 равна 9.

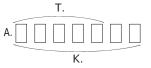
Б. Чтобы из 15 вычесть 6, можно число 6 заменить суммой удобных слагаемых 5 и 1. Из 15 надо вычесть сумму чисел 5 и 1; сначала вычтем 5, получится 10, а затем из 10 вычтем 1, получится 9. Значит, разность чисел 15 и 6 равна 9.

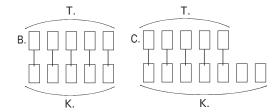
В. Вычесть из 15 число 6 – это значит найти такое число, при сложении которого с числом 6 получится 15. Таким числом будет 9, так как 6 + 9 = 15. Значит, 15 - 6 = 9.

Отметьте галочкой номер правильного ответа.

Ответ: рассуждение В.

Задание 2. Отметьте галочкой верную модель к задаче «Таня принесла из библиотеки 5 книг, а Катя на 2 книги больше. Сколько книг принесла Катя?».

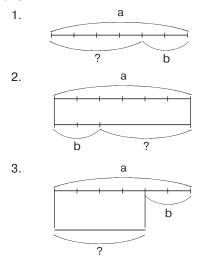




Приведите примеры задач, для решения которых используется действие сложения, и составьте к ним схематическую модель.

Ответ: верна модель С. Действие сложения используется при решении задач: а) на нахождение суммы двух чисел (задача: «У Тани 5 книг, а у Кати 2 книги. Сколько книг у девочек вместе?»); б) на нахождение уменьшаемого (задача: «Когда с полки взяли 5 книг, на ней осталось 2 книги. Сколько книг было на полке?».)

Задание 3. Отметьте галочкой неверную модель к задаче «Коле 6 лет, а Таня на 2 года моложе. Сколько лет Тане?».



Какую задачу можно составить к этой модели?

Ответ: неверна модель 1. Можно составить такую задачу: «У Тани было 6 яблок. Она отдала Коле 2 яблока. Сколько яблок осталось у Тани?».

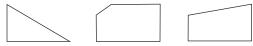
Для достижения третьего уровня (методическое творчество) необходим определённый опыт, который накапливается во время практической работы в школе. Однако, готовясь к профессиональной деятельности, будущие учителя должны уметь решать несложные методические задачи.

Методические задачи имеют цель формировать у студентов умение

создавать проблемные ситуации для постановки учебной задачи урока, составлять задания для предупреждения типичных ошибок, допускаемых младшими школьниками, составлять методические указания к организации учебной деятельности учащихся, овладевать умением ориентироваться в предметном содержании методической деятельности.

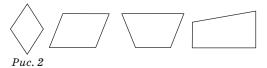
Приведём примеры некоторых методических задач.

Задача 1. При формировании представления о прямоугольнике дети допускают ряд типичных ошибок: во-первых, некоторые ученики относят к прямоугольникам любую геометрическую фигуру, имеющую прямой угол (рис. 1).



Puc. 1

Во-вторых, некоторые учащиеся считают прямоугольником любую геометрическую фигуру четырёхугольной формы (рис. 2).



Спланируйте работу на уроке по предупреждению указанных ошибок.

Задача 2. Сформулируйте учебную задачу урока, на котором учащиеся знакомятся со сложением однозначных чисел вида 7 + 5, 8 + 6.

Задача 3. Оцените правильность рассуждений ученика: «Число 527 содержит 527 единиц, так как

- в разряде единиц 7 единиц;
- в разряде десятков их 20 (1 десяток == 10 единиц, 2 десятка = 20 единиц);
- в разряде сотен содержится 5 сотен. Это 50 десятков или 500 единиц.

Таким образом, 527 = 500 + 20 + 7».

- 1. Верное.
- 2. Неверное.

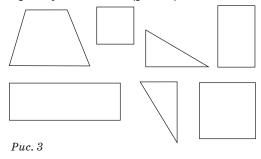
Чтобы «решить» методическую задачу 1, студенты должны хорошо представлять, как определяются геометрические понятия в начальном курсе математики. В частности, прямоугольник определяется через род и видовое отличие, т.е. прямоуголь-

ник — это четырёхугольник, у которого все углы прямые. Опираясь на это определение, учитель планирует работу на уроке. Приведём один из вариантов такого урока.

- 1. На доске начерчены (прикреплены) фигуры четырёхугольной формы, среди которых есть параллелограммы, ромбы, трапеции, прямоугольники, квадраты.
- Чем похожи все эти фигуры? Как можно их назвать одним словом?
- Разбейте эти фигуры на две группы так, чтобы можно было указать признак, по которому фигуры вошли в каждую группу.

Учитель обращает внимание учащихся на группу, в которой находятся прямоугольники и квадраты. Называются общие признаки, с помощью которых данные фигуры объединены: это четырёхугольники, у которых все углы прямые. Учитель подчёркивает, что квадрат — тоже прямоугольник.

Чтобы закрепить эти существенные признаки, дети выполняют задание на карточках: «Раскрасьте все прямоугольники» (рис. 3).



Для решения методической задачи 2 студентам нужно выполнить следующие требования:

- 1) учебная задача должна, с одной стороны, ориентировать учащихся на поиск нового способа действия, а с другой мотивировать их познавательную деятельность;
- 2) в процессе решения поставленной на уроке учебной задачи ученики должны осознать необходимость и рациональность нового способа действия.

Приведём вариант постановки учебной задачи урока, на котором учащимся надо «открыть» новый способ

действия при вычислении значений выражений вида 7+5,8+6.

В начале урока проводится самостоятельная работа. При её выполнении дети должны найти значения выражений, среди которых наряду со знакомыми случаями сложения и вычитания им встретятся новые случаи сложения однозначных чисел с переходом через разряд. Например: 5+3, 10-6, 40+8, 69-9, 20+30, 7+5, 8+6, 6+5.

Учитель замечает, что большинство детей не могут решить последние три примера.

При проверке самостоятельной работы обсуждаются способы действия. Первые два примера не вызывали у детей затруднения, поскольку это табличные случаи сложения однозначных чисел без перехода через разряд. Не вызвали затруднения и три следующих случая, так как сложение и вычитание выполняется на основе знания десятичного состава двузначных чисел. При обсуждении способа вычисления значений трёх последних выражений проводится беседа:

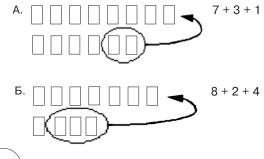
- Чем похожи эти выражения?
 (Складывают однозначные числа.)
- Кто сумел вычислить значения этих выражений?

Среди учеников могут быть те, кто сумел получить значение выражений, используя приём присчитывания по единице. Учитель предлагает объяснить, как они находили значение выражения 7+5, и сообщает:

– Вы пользовались присчитыванием по единице, но существует другой, более рациональный, удобный способ действия. Ваша задача – открыть его.

Итак, учебная задача поставлена. Для её решения предлагаются специальные учебные задания, при выполнении которых учащиеся «открывают» новый способ действия:

1. Какому рисунку соответствует каж-дое выражение?





2. Сравни выражения в каждой паре. Чем они похожи? Чем различаются?

Новый способ действия (вычислительный приём) сравнивается с уже известным детям способом (прибавление по единице), чтобы они сделали вывод о рациональности своего «открытия»: второе число нужно представить в виде двух удобных слагаемых, таких, чтобы при сложении первого числа с первым слагаемым получилось 10, а затем к 10 прибавить второе слагаемое.

Таким образом, диагностика методико-математической компетенции будущих учителей начальных классов не только позволяет выявить уровни готовности студентов к профессиональной деятельности, но и обеспечивает объективную, дифференцированную информацию о достигнутых ими результатах, а также активизирует учебный процесс при изучении курса «Методика преподавания математики в начальных классах».

Литература

- 1. Вербицкий, А.А. Личностный и компетентностный подход в образовании: проблемы интеграции / А.А. Вербицкий, О.Г. Ларионова. М.: Логос, 2009.
- 2. *Истомина*, *Н.Б.* Методика обучения математике в начальной школе: учеб. пос. / Н.Б. Истомина. Смоленск: Ассоциация XXI век, 2009.
- 3. *Нестеренко, Л.П.* Использование тестов при аттестации учителей начальных классов / Л.П. Нестеренко // Начальная школа. 1996. № 12.
- 4. Пи∂касистый, П.И. Подготовка студентов к творческой педагогической деятельности / П.И. Пидкасистый, Н.А. Воробьёва. М.: Педагог. об-во России, 2007.

Галина Григорьевна Шмырёва — профессор кафедры начального образования Владимирского государственного университета им. братьев А.Г. и Н.Г. Столетовых; Нина Фёдоровна Булатова — доцент кафедры начального образования Владимирского государственного университета им. брать-

ев А.Г. и Н.Г. Столетовых, г. Владимир.